Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Man-Cheng Hu, Xiao-Yun Wei and Shu-Ni Li*

School of Chemistry and Materials Science, ShaanXi Nomal University, Xi'an 710062, People's Republic of China

Correspondence e-mail: lishuni@snnu.edu.cn

Key indicators

Single-crystal X-ray study T = 296 KMean $\sigma(\text{C-C}) = 0.005 \text{ Å}$ R factor = 0.037 wR factor = 0.115 Data-to-parameter ratio = 15.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis[*N*-(2-aminoethyl)-4-methylbenzenesulfonamidato]copper(II)

The title compound, $[Cu(C_9H_{13}N_2O_2S)_2]$, is a centrosymmetric neutral complex with the Cu^{II} atom showing slightly distorted square-planar CuN₄ geometry. The crystal packing is consolidated by intramolecular N-H···O and intermolecular C-H··· π interactions.

Comment

Although the substitution of the amide proton by a metal ion is not an easy process (Antolini *et al.*, 1985), in the case of a sulfonamide group the acidity of the H atom is increased and its replacement is easier (Otter *et al.*, 1998; Sanchez-Piso *et al.*, 2002). This process led to the title compound, (I) (Fig. 1), which exists as a neutral complex.

The Cu^{II} atom in (I) (site symmetry $\overline{1}$) is chelated by two ligands, which use their amide and amine N atoms to bond to the metal (Table 1). A square-planar CuN₄ geometry arises, the N1···N2 and N1···N2ⁱ separations being 2.631 (4) and 3.023 (4) Å, respectively. The Cu1–N1 distance is significantly longer than Cu1–N2 distance, suggesting that the amine N atom is a slightly better donor than the amide N atom. The bond-valence sum for the Cu centre is calculated to be 2.02, which is very close to the expected value of 2 (Thorp, 1992). This suggests that the two very long Cu···O1 contacts of 2.699 (2) Å linking the Cu atom to sulfonamide O atoms of neighbouring molecules should not be regarded as bonds.

An intramolecular N-H···O hydrogen bond helps to stabilize the molecular conformation (Table 2). The crystal structure may be further stabilized by two weak $C-H···\pi$ interactions.

Experimental

The *N*-(2-aminoethyl)-4-methylbenzenesulfonamide ligand (*L*) was synthesized according to a literature method (Barros & Sineriz, 2000). An ethanol solution (10 ml) of Cu(CH₃COO)₂·H₂O (0.19 g, 1 mmol) was added to a solution of *L* (0.214 g, 1 mmol) in ethanol (20 ml) with stirring for 1 h. The resulting blue solution was filtered, the filtrate allowed to stand and blue block-shaped crystals of (I) were obtained by slow evaporation after two weeks.

© 2006 International Union of Crystallography All rights reserved Received 1 November 2006 Accepted 3 November 2006

metal-organic papers

Crystal data

 $\begin{bmatrix} Cu(C_9H_{13}N_2O_2S)_2 \end{bmatrix} \\ M_r = 490.09 \\ Triclinic, P\overline{1} \\ a = 5.6497 (6) Å \\ b = 7.8410 (9) Å \\ c = 13.2882 (15) Å \\ \alpha = 73.020 (1)^{\circ} \\ \beta = 84.913 (1)^{\circ} \\ \gamma = 69.454 (1)^{\circ} \\ \end{bmatrix}$

Data collection

Bruker SMART CCD diffractometer ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2001) $T_{\min} = 0.641, T_{\max} = 0.785$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0885P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.037$	+ 0.2074P]
$wR(F^2) = 0.115$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma)_{\rm max} < 0.001$
1848 reflections	$\Delta \rho_{\rm max} = 0.54 \ {\rm e} \ {\rm \AA}^{-3}$
122 parameters	$\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$
H-atom parameters constrained	Extinction correction: SHELXL97
-	Extinction coefficient: 0.044 (7)

 $V = 527.12 (10) \text{ Å}^3$

 $D_x = 1.544 \text{ Mg m}^{-3}$

 $0.39 \times 0.30 \times 0.20 \text{ mm}$

2651 measured reflections

1848 independent reflections

1715 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

 $\mu = 1.27 \text{ mm}^{-1}$

T = 296 (2) K

Block, blue

 $\begin{array}{l} R_{\rm int}=0.014\\ \theta_{\rm max}=25.1^\circ\end{array}$

Z = 1

Table 1

Selected bond lengths (Å).

Cu1-N2	1.983 (2)	Cu1-N1	2.024 (2)

Table 2

Hydrogen-bond geometry (Å, °).

Cg is the centroid of ring C1–C6.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2B\cdots O2^{i}$	0.90	2.10	2.849(4)	140
$C15-H15B\cdots Cg^{iii}$	0.93	3.01	3.741 (4)	161

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) -x + 1, -y + 1, -z; (iii) x, y - 1, z.

The H atoms were located in difference maps, relocated in idealized positions (C-H = 0.93–0.97 Å and N-H = 0.90 Å) and refined as riding, with U_{iso} (H) = 1.2 U_{eq} (C,N). $\begin{array}{c} & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$

Figure 1

View of the molecular structure of (I), showing 50% probability displacement ellipsoids (arbitrary spheres for the H atoms). Hydrogen bonds are shown as dashed lines. [Symmetry code: (i) 1 - x, -y, 1 - z.]

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2001); software used to prepare material for publication: *SHELXTL*.

Financial support from the National Natural Science Foundation of China (No. 20471035) is acknowledged.

References

Antolini, L., Battaglia, L. P., Bonamartini, C. A., Marcotrigiano, G., Menabue, L. & Pellacani, G. C. (1985). J. Am. Chem. Soc. 107, 1369–1375.

- Barros, M. T. & Sineriz, F. (2000). Tetrahedron, 56, 4759-4764.
- Bruker (2001). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Otter, C. A., Couchman, S. M., Jeffery, J. C., Mann, K. L. V., Psillakis, E. & Ward, M. D. (1998). *Inorg. Chim. Acta*, 278, 178–184.

Sanchez-Piso, J., Garcia-Vazquez, J. A., Romero, J., Duran, M. L., Sousa-Pedrares, A., Labisbal, E. & Nascimento, O. R. (2002). *Inorg. Chim. Acta*, 328, 111–122.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Thorp, H. H. (1992). Inorg. Chem. 31, 1585-1588.