Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Man-Cheng Hu, Xiao-Yun Wei and Shu-Ni Li*

School of Chemistry and Materials Science, ShaanXi Nomal University, Xi'an 710062,
People's Republic of China

Correspondence e-mail: lishuni@snnu.edu.cn

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.037$
$w R$ factor $=0.115$
Data-to-parameter ratio $=15.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Bis[N-(2-aminoethyl)-4-methylbenzenesulfonamidato]copper(II)

The title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}\right)_{2}\right]$, is a centrosymmetric neutral complex with the $\mathrm{Cu}^{\text {II }}$ atom showing slightly distorted square-planar CuN_{4} geometry. The crystal packing is consolidated by intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and intermolecular $\mathrm{C}-$ $\mathrm{H} \cdots \pi$ interactions.

Comment

Although the substitution of the amide proton by a metal ion is not an easy process (Antolini et al., 1985), in the case of a sulfonamide group the acidity of the H atom is increased and its replacement is easier (Otter et al., 1998; Sanchez-Piso et al., 2002). This process led to the title compound, (I) (Fig. 1), which exists as a neutral complex.

The $\mathrm{Cu}^{\mathrm{II}}$ atom in (I) (site symmetry $\overline{1}$) is chelated by two ligands, which use their amide and amine N atoms to bond to the metal (Table 1). A square-planar CuN_{4} geometry arises, the $\mathrm{N} 1 \cdots \mathrm{~N} 2$ and $\mathrm{N} 1 \cdots \mathrm{~N} 2^{\mathrm{i}}$ separations being 2.631 (4) and 3.023 (4) \AA, respectively. The $\mathrm{Cu} 1-\mathrm{N} 1$ distance is significantly longer than $\mathrm{Cu} 1-\mathrm{N} 2$ distance, suggesting that the amine N atom is a slightly better donor than the amide N atom. The bond-valence sum for the Cu centre is calculated to be 2.02 , which is very close to the expected value of 2 (Thorp, 1992). This suggests that the two very long $\mathrm{Cu} \cdots \mathrm{O} 1$ contacts of 2.699 (2) \AA A linking the Cu atom to sulfonamide O atoms of neighbouring molecules should not be regarded as bonds.

An intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond helps to stabilize the molecular conformation (Table 2). The crystal structure may be further stabilized by two weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

Experimental

The N-(2-aminoethyl)-4-methylbenzenesulfonamide ligand (L) was synthesized according to a literature method (Barros \& Sineriz, 2000). An ethanol solution (10 ml) of $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.19 \mathrm{~g}$, $1 \mathrm{mmol})$ was added to a solution of $L(0.214 \mathrm{~g}, 1 \mathrm{mmol})$ in ethanol $(20 \mathrm{ml})$ with stirring for 1 h . The resulting blue solution was filtered, the filtrate allowed to stand and blue block-shaped crystals of (I) were obtained by slow evaporation after two weeks.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}\right)_{2}\right]$
$M_{r}=490.09$
Triclinic, $P \overline{1}$
$a=5.6497$ (6) \AA
$b=7.8410$ (9) A
$c=13.2882(15) \AA$
$\alpha=73.020(1)^{\circ}$
$\beta=84.913(1)^{\circ}$
$\gamma=69.454(1)^{\circ}$
Data collection
Bruker SMART CCD
diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\text {min }}=0.641, T_{\text {max }}=0.785$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.115$
$S=1.00$
1848 reflections
122 parameters
H -atom parameters constrained

$$
\begin{aligned}
& V=527.12(10) \AA^{3} \\
& Z=1 \\
& D_{x}=1.544 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=1.27 \mathrm{~mm}^{-1} \\
& T=296(2) \mathrm{K} \\
& \text { Block, blue } \\
& 0.39 \times 0.30 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

2651 measured reflections 1848 independent reflections 1715 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.014$
$\theta_{\text {max }}=25.1^{\circ}$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0885 P)^{2}\right. \\
& \quad+0.2074 P] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.54 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.32 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.044(7)
\end{aligned}
$$

Table 1
Selected bond lengths (\AA).

$\mathrm{Cu} 1-\mathrm{N} 2$	$1.983(2)$	$\mathrm{Cu} 1-\mathrm{N} 1$	$2.024(2)$

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).
Cg is the centroid of ring C1-C6.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N2-H2B $\cdots \mathrm{O}^{\text {i }}$	0.90	2.10	$2.849(4)$	140
C7-H7B $\cdots C g^{\text {ii }}$	0.93	3.13	$3.989(3)$	154
C15-H15B $\cdots g^{\text {iii }}$	0.97	3.01	$3.741(4)$	161

Symmetry codes: (i) $-x+1,-y,-z+1$; (ii) $-x+1,-y+1,-z$; (iii) $x, y-1, z$.
The H atoms were located in difference maps, relocated in idealized positions $(\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$ and $\mathrm{N}-\mathrm{H}=0.90 \AA$) and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Figure 1

View of the molecular structure of (I), showing 50% probability displacement ellipsoids (arbitrary spheres for the H atoms). Hydrogen bonds are shown as dashed lines. [Symmetry code: (i) $1-x,-y, 1-z$.]

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

Financial support from the National Natural Science Foundation of China (No. 20471035) is acknowledged.

References

Antolini, L., Battaglia, L. P., Bonamartini, C. A., Marcotrigiano, G., Menabue, L. \& Pellacani, G. C. (1985). J. Am. Chem. Soc. 107, 1369-1375.

Barros, M. T. \& Sineriz, F. (2000). Tetrahedron, 56, 4759-4764.
Bruker (2001). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Otter, C. A., Couchman, S. M., Jeffery, J. C., Mann, K. L. V., Psillakis, E. \& Ward, M. D. (1998). Inorg. Chim. Acta, 278, 178-184.
Sanchez-Piso, J., Garcia-Vazquez, J. A., Romero, J., Duran, M. L., SousaPedrares, A., Labisbal, E. \& Nascimento, O. R. (2002). Inorg. Chim. Acta, 328, 111-122.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Thorp, H. H. (1992). Inorg. Chem. 31, 1585-1588.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

